第十三届人民企业社会责任奖

候选企业:北京明略软件系统有限公司

2018年11月12日17:16  来源:人民网-公益频道
 

企业名称:

北京明略软件系统有限公司

竞选理由:

作为国内行业知识图谱领域的创新公司,明略数据在2018年4月进入了IDC的《中国知识图谱市场,2018》创新者研究报告,成为IDC评选出的5家中国知识图谱技术应用市场创新者。2018年5月入选人民网《中国大数据独角兽企业TOP20榜》

继2017年明略数据推出“行业人工智能大脑明智系统1.0”(基于知识图谱数据库蜂巢NEST,通过企业级Siri小明,以对话的形式高效提供业务决策支持)之后,2018年9月,明略产品技术体系全面升级,于业界首创“符号主义和深度学习有效结合”人工智能顶层设计,推出行业内首个打通感知和认知的行业人工智能大脑 --明智系统2.0,基于AI驱动的数据治理平台,实现各类结构化、非结构化视频、图像、文本等多元异构数据的符号化过程,通过知识图谱数据库蜂巢NEST完成数据的汇聚、融合、推理及复杂运算,最终为客户构建完整的行业人工智能大脑--公安大脑、数字城市大脑、工业安全大脑、金融风控大脑等,推动人机同行,让AI真正创造商业与社会价值。

除了持续推动产品创新外,明略数据还在不断引入顶尖人才。2018年5月,IEEE Fellow、国家“千人计划”特聘专家吴信东教授加盟明略数据,出任公司首席科学家和副总裁,2018年7月明略科学院成立。吴信东所领导的“大数据知识工程”科研也将在明略数据的投资下进一步发展,落实科技部2016年重点专项“大数据知识工程基础理论及其应用研究”的成果,这就是极具前瞻性、处于起步阶段的“明略大智慧系统”。

竞选说明:

完整的人工智能系统

“明智系统2.0的形象,就像大脑的形状。左边是深度学习,右边就是知识图谱,这两边连接到一起,即把感知和认知联结起来,这就是我们新一代完整的人工智能系统。”明略数据创始人吴明辉在“行业AI大脑明智系统2.0”发布会上表示。

今天,各行各业都在倡导使用人工智能,但是为什么人工智能技术在很多行业中,还没有得到很好的发展?吴明辉认为,其中的原因很简单,就是因为很多人工智能专业技术公司都只聚焦某一个或某几个人工智能技术上,而没有真正的把完整的人工智能系统组建起来,通过完整的人工智能能力为行业提供整合服务。

明智系统2.0其实就是人工智能技术的整合服务,通过优选行业中业已成熟的感知技术、认知技术以及其它所有组件,链接到一起后的成果。本次为了增强感知数据,明略数据推出了语音识别数据处理模块,专门用于感知音频数据;与合作伙伴“千视通”合作的机器视觉数据处理模块,专门用于感知视频数据。而“AI驱动的数据治理”平台则包括之前的CONA结构化数据通用治理模块以及本次新增加的Raptor非结构化文本治理模块,再加上新推出的HARTS多元数据深度挖掘计算模块。

感知计算本质上是为认知计算提供数据基础。“AI驱动的数据治理”平台,完成了各类结构化数据、非结构化数据、图像、文本等多维数据的处理过程,处理的结果就是“符号”。本次2018明略数据的年度产品发布会主题为“符号的力量”,即强调“符号”是连接感知计算与认知计算的纽带。“符号”源自人工智能三大流派中经典的“符号主义”流派,其核心是用基于数理逻辑的数理符号来表达和模拟人类的智能。

简单的理解,就是当用户问询“明察”系统时,例如“他是谁”,那么“AI驱动的数据治理”系统就可以把“他是谁”这个问题“翻译”成跟身份特征相关的ID,这些ID包括手机号、身份证号、护照号等,这些信息已经在后台通过符号化处理形成了数据结构,通过索引就能马上搜索出结果,这就是CONA和Raptor的功能;更进一步,还可以在搜索出的结果之间建立关联关系,这就是HARTS的功能。

那么,明智系统2.0“左脑”的感知部分整体输出的结果就是符号化的知识和情报;知识和情报输送到明智系统2.0“右脑”后,经过蜂巢NEST混合型知识存储数据库中已经存储的公安大脑、金融大脑、工业安全大脑和数字城市大脑等行业知识图谱的处理,再结合SCOPA知识图谱分析平台,形成综合情报研判结果,最终输出“认知”,即可用于行动的洞察。

吴明辉介绍说,明智系统2.0已经在有些客户处得到了应用,例如明略数据与某公安省厅合作,把感知系统和认知系统打通,解决全数据类型的情报研判工作。“真的就像福尔摩斯一样,可以用非常简单的线索把全部信息关联出来。”

挑战大数据知识工程

明智系统2.0其实是明略数据公司中长期战略的开始,未来明略数据想要真正做到的就是大数据知识工程的落地。

什么是大数据知识工程?这是从大数据到大知识再到工程化输出可行动的洞察的过程和结果。2016年,科技部启动了云计算与大数据重点专项工程,其中“大数据知识工程基础理论及其应用研究”专项项目的研究内容包括:针对大数据异构、自治、复杂、演化的网络环境,研究多源、动态、异质碎片化知识/知识簇的表示模型与在线挖掘方法,揭示碎片化知识的时空特性和演化机理;研究碎片化知识间语义关联与涌现特性,探寻其动态挖掘与拓扑融合机理;设计多粒度情景感知与知识寻径模型,研究交互式个性化服务的知识适配机理。

吴信东就是大数据知识工程领域的世界级专家。2016年,吴信东牵头,联合国内15家单位承接了科技部“大数据知识工程基础理论及其应用研究”专项。吴信东是该项目的首席科学家,15家单位包括合肥工业大学、中科院与系统科学研究院,西安交通大学、中国科技大学、华东师范大学,还有百度和杭州的丁香园等。

大数据知识工程(BigKE: Knowledge Engineering with Big Data)实际上是从国内兴起、引领大数据分析走向大知识研究和应用的一个国际前沿研究方向。2014年1月,吴信东教授等提出了大数据在异构、自治、复杂、演化环境下的HACE定理,大数据知识工程主要指针对用户产生的海量、低质量、无序的碎片化知识的新型知识服务系统,该系统具有知识库的自完备和增殖能力,解决问题方法是根据与用户的交互进行自学习。

简单的理解,大数据知识工程就是如何把海量的由用户自己产生的碎片化数据,基于时间和空间的属性,形成碎片化知识,再把碎片化知识连接起来用于整体系统的辅助决策,这就是“大智慧”。 大数据知识工程主要解决了传统知识工程中的“知识获取”和“知识再工程”两个瓶颈问题,因为传统知识工程是由专家产生知识,因此知识再工程也比较困难。

此外,在边缘计算兴起的前提下,很多物联网传感器和移动设备产生的碎片化大数据,其价值都是转瞬即逝,必须要马上转化为可行动的洞察。而可行动的洞察也不再是辅助。

注:以上资料均由申报者提供 

(责编:刘舜欣、贺迎春)